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Abstract NASA’s Carbon Monitoring System Flux Pilot Project (FPP) was designed to better understand
contemporary carbon fluxes by bringing together state-of-the art models with remote sensing data sets.
Here we report on simulations using NASA’s Goddard Earth Observing System Model, version 5 (GEOS-5)
which was used to evaluate the consistency of two different sets of observationally informed land and
ocean fluxes with atmospheric CO2 records. Despite the observation inputs, the average difference in
annual terrestrial biosphere flux between the two land (NASA Ames Carnegie-Ames-Stanford-Approach
(CASA) and CASA-Global Fire Emissions Database version 3 (GFED)) models is 1.7 Pg C for 2009–2010.
Ocean models (NASA’s Ocean Biogeochemical Model (NOBM) and Estimating the Circulation and Climate of
the Ocean Phase II (ECCO2)-Darwin) differ by 35% in their global estimates of carbon flux with particularly
strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5
reasonably simulated the seasonal cycle observed at Northern Hemisphere surface sites and by the
Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at
Southern Hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of
XCO2 observed by GOSAT, it struggled to reproduce these aspects of Atmospheric Infrared Sounder
observations. Despite large differences between land and ocean flux estimates, resulting differences in
atmospheric mixing ratio were small, typically less than 5 ppm at the surface and 3 ppm in the XCO2

column. A statistical analysis based on the variability of observations shows that flux differences of these
magnitudes are difficult to distinguish from inherent measurement variability, regardless of the
measurement platform.

1. Introduction

Major weaknesses still exist in our understanding of the processes that control atmospheric carbon
dioxide (CO2) concentrations and as a result, our ability to simulate and predict changes in the Earth
system. While the magnitude of the global growth rate of atmospheric CO2 is well constrained by surface
observations [e.g., Conway et al., 1994], attributing its changes to specific processes remains a challenge.
The Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3) compared estimates of the
carbon budget produced by a variety of inverse models. Their results indicated the presence of a larger
Northern Hemisphere (NH) land carbon sink than represented in the a priori flux distribution assumed for
the experiment, though the results were strongly influenced by differences in model transport fields
[Gurney et al., 2002]. The precise location, cause of, and variability of this missing carbon sink remain
poorly understood despite the insights provided by intercomparison studies. In addition to uncertainty in
the processes governing the contemporary carbon budget, there is evidence that natural land and ocean
carbon sinks have decreased over the course of the twentieth century resulting in an increase in the
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fraction of anthropogenic emissions remaining in the atmosphere. However, assessment of changes in the
airborne fraction remains controversial [Le Quéré et al., 2009; Knorr, 2009].

Model estimates of land and ocean carbon flux are important because they are one of the main ways to
understand the underlying processes governing carbon storage and exchange. These models facilitate an
enhanced understanding that may one day contribute to improved abilities to predict changes in the global
carbon budget. A number of attempts have been made to compare estimates of carbon flux from different
land models. Randerson et al. [2009] compared two biogeochemistry models using a common modeling
framework and demonstrated that global carbon sinks differed by a factor of 2 during the 1990s. Schaefer
et al. [2012] and Raczka et al. [2013] compared estimates of gross primary production (GPP) and carbon
balance among terrestrial ecosystem models over North America and found large differences. Schwalm et al.
[2010] compared output from 22 terrestrial biosphere models with data from flux towers in North America
and found that models’ ability to reproduce observed monthly net ecosystem exchange was poor, though
performance was better at forested sites than nonforested sites. Most recently, Huntzinger et al. [2012]
compared 19 terrestrial biosphere models over North America and found large differences in estimates of
GPP (between 12.2 and 32.9 Pg C yr�1) and heterotrophic respiration (5.6 to 13.2 Pg C yr�1) among models
with smaller differences in net ecosystem production (�0.7 to 2.2 Pg C yr�1). These results underscore
the continued uncertainty in land flux processes. Observational estimates of net ecosystem exchange
collected worldwide at tower stations provide valuable information to constrain carbon fluxes at local
scales [e.g., Lafleur et al., 2003; Hollinger et al., 2004; Winderlich et al., 2014]. However, these observations
are difficult to translate to realistic global estimates because of the spatial heterogeneity of vegetation
and limited flux sampling locations.

While ocean carbon fluxes are considered to be reasonably well constrained by the observational database
compiled by Takahashi et al. [2002, 2009], certain regions are poorly sampled and models are still needed to
understand and predict how air-sea exchange processes might evolve in the future. As is the case among
land models, wide disparity exists among model-derived ocean flux estimates. Doney et al. [2004] showed
that errors in model physical processes complicated efforts to compare ocean biogeochemical fields among
models. Najjar et al. [2007] documented large circulation differences among 12 global ocean models that
influenced export of dissolved organic matter, particularly to the Southern Ocean. Popova et al. [2012]
compared five ocean models in the arctic and found that, while primary production was generally consistent
among models, the models disagreed over the relative importance of the processes governing production.
Uncertainties in the ocean carbon uptake are especially important because they are directly propagated into
the inference of the global terrestrial sink as used by the Global Carbon Project [Le Quéré et al., 2013].

It is important to design an Earth observing system that will enable reduction of uncertainties in carbon fluxes
and enhance our ability to predict changes in the carbon climate system. A number of components of the
carbon cycle are currently constrained by different types of observations. The Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments aboard NASA’s Terra and Aqua satellites provide information about
vegetation characteristics and fire. Information from the advanced very high resolution radiometer
(AVHRR) instruments aboard NOAA satellites provide a longer term record of vegetation evolution. The
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Suomi National Polar-orbiting Partnership (Suomi NPP),
and MODIS all provide information on ocean color and productivity, while MODIS and geostationary
weather satellites observe the physical ocean state. Weather satellites enhance our understanding of the
carbon cycle by providing information on atmospheric circulation that is necessary for interpreting
atmospheric CO2 observations. In addition, these weather satellites inform hydrology and temperature
estimates used by terrestrial biosphere models to estimate flux. Though these remote sensing products
inform a number of model-based land and ocean carbon flux estimates, substantial uncertainty remains as
documented in the numerous studies cited above.

Atmospheric CO2 observations provide an important constraint on carbon fluxes but are limited in space and
time. NOAA maintains a network of surface sampling sites in remote locations worldwide where trace gas
measurements are conducted several times per week as well as a smaller number of observatories and tower
sites that provide continuous CO2 data. Ground-based column CO2 observations are currently collected at a
small number of stations as part of the Total Carbon Column Observing Network (TCCON). Chevallier et al.
[2011] demonstrated the utility of column CO2 data for inferring regional carbon budgets for the first time
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using data from this sparse network. Several satellite data sets are available from the Atmospheric Infrared
Sounder (AIRS) instrument aboard Aqua and the Japanese Greenhouses gases Observing SATellite (GOSAT),
and, prior to May 2010, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography
(SCIAMACHY) instrument aboard Environmental Satellite. The impact of satellite CO2 data is limited by the
inability of these instruments to observe in the presence of clouds and aerosols (GOSAT) and low sensitivity
to near surface CO2mixing ratios (AIRS). Additionally, the observing strategies of GOSATand SCIAMACHY only
permit observations during daylit hours. The use of satellite CO2 observations for flux inference is still an
evolving field of research. Chevallier et al. [2009] demonstrated that AIRS data could improve flux estimates,
but that these data alone performed worse in inversions when compared with surface flask data. Several
recent studies have shown that GOSAT data have the potential to reduce uncertainty in a priori flux estimates
[e.g., Basu et al., 2014; Chatterjee et al., 2013; Guerlet et al., 2013;Maksyutov et al., 2013], but the results can be
strongly impacted by systematic errors contained in the data as noted by Basu et al. [2013] and Chevallier
et al. [2014].

NASA’s Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand the
observational constraints placed on carbon fluxes by bringing together state-of-the-art models with a wealth
of remote sensing resources. “Bottom up” surface flux estimates were computed by two land and two ocean
models for the 2009–2010 period using a consistent set of meteorology input from NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA) [Rienecker et al., 2011]. These results were
propagated forward in the atmosphere using NASA’s Goddard Earth Observing System Model, version 5
(GEOS-5) constrained byMERRA analyzedmeteorological fields. Unlike other model intercomparison projects
that span a much larger range of model variables, our intention is not to assess the full range of flux
uncertainty and variability. This work brings together a small group of model estimates of flux and
atmospheric transport that are informed by remote sensing data sets and draws upon the expertise of the
creators of those data sets to assess flux differences and their manifestation in atmospheric CO2 records.
Here we report on the results of these simulations with a focus on understanding how uncertainty in
observationally informed land and ocean flux estimates propagates into atmospheric CO2 and characterizing
how differences in flux processes might be observed in the atmosphere by existing platforms. This work
complements the application of “top-down” approaches used to infer the surface fluxes given satellite
observations [Liu et al, 2014] by analyzing model performance and sensitivity to the assumption of flux in
greater detail. Section 2 of this paper describes the models used in this work, while section 3 of this paper
describes the comparison with different CO2 data sets. Section 4 provides a summary and conclusions drawn
from this work.

2. Model and Data Background

The CMS FPP modeling framework includes land fluxes from the Carnegie-Ames-Stanford-Approach–Global
Fire Emissions Database version 3 (CASA-GFED3) and the NASA Ames CASA model (hereafter referred to as
Ames CASA) described in sections 2.1.1 and 2.1.2, respectively. Ocean model fluxes come from NASA’s
Ocean Biogeochemical Model (NOBM; section 2.2.1) and the ECCO2-Darwin model (section 2.2.2). These
fluxes were transported using the GEOS-5 Atmospheric General Circulation Model (AGCM) constrained by
the MERRA (section 2.3). Model output was sampled at the times and locations of surface, TCCON, and
satellite observations as described in section 3 in order to assess overall model performance and the ability
of different observational data sets to discern between land and ocean flux estimates.

2.1. Land Biosphere Flux Estimates
2.1.1. CASA-GFED3
CASA-GFED3 derives from Potter et al. [1993], diverging in development since Randerson et al. [1996]. CASA is
a light use efficiency type model: net primary production (NPP) is expressed as the product of
photosynthetically active solar radiation, a light use efficiency parameter, scalars that capture temperature
and moisture limitations, and fractional absorption of solar radiation by the vegetation canopy (FPAR). This
latter variable is derived from satellite data.

Fire parameterization was incorporated into the model by van der Werf et al. [2004], producing CASA-GFED,
and the model has undergone several revisions [van der Werf et al., 2006, 2010] leading to its most recent
version CASA-GFED3. Input data sets include air temperature, precipitation, incident solar radiation, a soil
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classification map, and a number of
satellite derived products including
MODIS vegetation classification,
MODIS-based burned area, and
AVHRR FPAR.

CASA-GFED3 is run at monthly time steps
with 0.5° spatial resolution. As part of the
CMS FPP, fluxes were computed using
MERRA meteorology and FPAR derived
from AVHRR normalized difference
vegetation index (NDVI) [Tucker et al.,
2005] according to the procedure of Los
et al. [2000]. The original 8 km, biweekly
AVHRR NDVI was aggregated up to the
monthly, 0.5° × 0.5° grid by averaging.
Model output includes Net Primary
Production (NPP), heterotrophic
respiration (Rh), and fire emissions
from forest, savanna, deforestation, peat,
and agriculture. For this project, fire
emissions were disaggregated from
monthly to daily using the MODIS active

fire products as described in Mu et al. [2011]. Monthly NPP and heterotrophic respiration were
disaggregated to 3 h time intervals following Olsen and Randerson [2004].

2.1.2. NASA Ames CASA
Ames CASA relies on satellite observations of vegetation cover from MODIS as time series inputs to estimate
monthly carbon fluxes from terrestrial ecosystems worldwide. All model algorithms, parameter settings, and land
cover data sets used in Ames CASA for CMS flux computations have been documented by Potter et al. [2007].

For the CMS FPP computations of net biosphere fluxes of carbon to the atmosphere, the Ames CASA
version documented in Potter et al. [2007] has been modified to use global 0.5° (latitude/longitude) MODIS
enhanced vegetation index (EVI) input data (for the years 2000–2010) generated by aggregating monthly
0.05° (~6 km) values. In addition, in cropland areas, 40% of annual NPP carbon is removed each year from the
litter decomposition flux pathways and diverted into harvested food products. This is assumed to be
reemitted as a consistent monthly flux (1/12 of the annual cropland harvest carbon total) with a weighted
spatial distribution corresponding to the maps of cropland harvest CO2 emissions developed by Ciais et al.
[2007]. Net biosphere fluxes for both CASA-GFED3 and Ames CASA were disaggregated to 3 h time intervals
following Olsen and Randerson [2004]. In contrast to the CASA-GFED3 fluxes, biomass burning is not included
in the Ames CASA fluxes computed as part of the CMS FPP. CASA-GFED3 does not include the crop
redistribution incorporated in Ames CASA flux estimates.

The Ames CASA fluxes produced as part of the CMS FPP differ from a more recent version of Ames CASA
described in Potter et al. [2012] both in the use of different meteorological driver data and in the
methodology of process representation.

2.1.3. Differences Between Land Flux Estimates
Figure 1 shows time series of monthly global flux totals computed by the two land models. Ames CASA
estimates a weaker land sink (driven by NH summer) and a stronger source during NH winter compared
to CASA-GFED3. These differences result in substantially different annual flux estimates for both years; during
2009 (2010), Ames CASA estimates that the terrestrial biosphere is a 2.5 (2.1) Pg C source, while
CASA-GFED3 calculates a smaller 0.34 (1.2) Pg C source. The average difference in annual land flux between the
two models is 1.7 Pg C. For reference, the uncertainty in land flux between these two models is nearly 20% of
the annual mean fossil fuel emissions for the 2009 to 2010 period (9 Pg C) [Boden et al., 2011]. GFED3 fluxes
for 2009 (2010) indicate that fires are a global 2.1 (2.9) Pg C source of carbon to the atmosphere, while Ames
CASA fluxes considered here do not include the effects of fire. In both models, the land biosphere is a source of

Figure 1. Global land and ocean flux estimates produced as part of NASA’s
CMS FPP for 2009 and 2010 in Pg carbon per month. Dark green solid line
indicates combined Net Ecosystem Production (NEP) and biomass burning
fluxes computed from by the CASA-GFED3 model (dotted dark green line
shows biomass burning contribution only). Brown dashed line indicates
NEP from the Ames CASAmodel. Blue lines show ocean flux estimates from
NOBM (dark blue solid) and ECCO2-Darwin (light blue dashed).
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carbon to the atmosphere rather than a sink as indicated by multimodel inversion studies [e.g., Gurney et al.,
2002]. Using observed atmospheric CO2 increases, fossil fuel emission inventories, and ocean models, Le Quéré
et al. [2013] estimate the magnitude of the land carbon sink as 3.3 (2.55) Pg C during 2009 (2010). This may
be due to the fact that neither model includes several processes thought to be important in explaining the
global land sink including CO2 fertilization [e.g., Bellassen et al., 2011; Vanuytrecht et al., 2011; Piao et al.,
2013; Los, 2013], nitrogen deposition [e.g., Esser et al., 2011; Bala et al., 2013; Fleischer et al., 2013; Gerber et al.,
2013], and land use history [e.g., Sentman et al., 2011]. In addition to differences in the magnitude of the land
biosphere flux estimates, the Ames CASA and CASA-GFED3 models indicate differences in the phasing of
the global seasonal cycle in terrestrial carbon flux to the atmosphere. Ames CASA diagnoses an earlier pattern
of drawdown during NH spring and an earlier transition from sink to source during NH autumn in 2009.

Figure 2 shows the geographic distribution of land fluxes computed by CASA-GFED3 and Ames CASA for
4months during 2009. During January, CASA-GFED3 indicates greater drawdown of CO2 over the Southern
Hemisphere (SH) regions of South America and Africa than does Ames CASA. Fire emissions in equatorial
Africa and Australia are also evident in CASA-GFED3 while absent in Ames CASA. In the NH, Ames CASA
estimates greater release of CO2 to the atmosphere along the east coasts of the United States and China. In
April, Ames CASA fluxes are generally weak in most locations as the model transitions between winter and
summer seasons; areas of western Europe have transitioned from a source in January to a sink of CO2 in April. In
contrast, CASA-GFED3 patterns are generally similar in April and January but fluxes from the land to the
atmosphere are slightly larger at most NH locations. During July, CASA-GFED3 estimates greater uptake of CO2

at most NH locations, particularly at high latitudes, than does Ames CASA. This contrast is also evident over
equatorial South America while in midlatitude regions of the continent, CASA-GFED3 indicates greater release

Figure 2. Monthly land flux estimates from the (left) CASA-GFED3 and (middle) Ames CASA models and their difference (right, CASA-GFED3 minus Ames CASA) for
January, April, July, and October of 2009. Units are 10�2 kg carbon per m2 per month.
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of CO2 to the atmosphere. Themodels also differ strongly in their assessment of fluxes over India and Southeast
Asia during July with CASA-GFED3 indicating a substantial source and Ames CASA indicating a sink. During
October, Ames CASA fluxes are generally much weaker than CASA-GFED3 fluxes. Strong fire activity over South
America is evident in CASA-GFED3 during October and not included in Ames CASA flux estimates. Differences
between the spatial distributions of Ames CASA and CASA-GFED3 fluxes for 2010 (not shown) are qualitatively
similar though 2010 was characterized by larger fire emissions in CASA-GFED3.

Both Figures 1 and 2 comparing CASA-GFED3 and Ames CASA show greater uptake in the Northern
Hemisphere summer and less emissions during winter from CASA-GFED3. Sensitivity experiments using
different input data sets showed that this difference is largely due to the source of FPAR information in the
two models. Ames CASA uses EVI as a surrogate for FPAR [Potter et al., 2012], while CASA-GFED3 derives
FPAR from the AVHRR-based Global Inventory Modeling and Mapping Studies NDVI [Pinzon and Tucker, 2014]
according to Los et al. [2000]. FPAR derived from NDVI is generally higher during the growing season in
temperate and boreal Northern Hemisphere contributing to the larger uptake during the northern growing
season in CASA-GFED3 relative to the Ames CASA model, which dominates the global seasonal cycle shown
in Figure 1. The earlier phasing of the seasonal cycle and the larger emissions in the winter shown for Ames
CASA arises because Ames CASA uses a soil temperature parameterization [Potter, 1997] that produces
delayed respiration in the spring while increasing respiration in the autumn and early winter compared to
CASA-GFED3 which uses air temperature to control relative humidity.

2.2. Ocean Flux Estimates
2.2.1. NOBM
Global ocean carbon dynamics are simulated by the NOBM. It is a three-dimensional representation of
coupled circulation, biogeochemical, and radiative processes in the global oceans [Gregg et al., 2003; Gregg
and Casey, 2007]. The biogeochemical processes model contains four phytoplankton groups, four nutrient
groups, a single herbivore group, and three detrital pools. The phytoplankton groups differ in maximum
growth rates, sinking rates, nutrient requirements, and optical properties. Three detrital pools provide for
storage of organic material, sinking, and eventual remineralization back to usable nutrients. Radiative transfer
calculations provide the underwater irradiance fields necessary to drive growth of the phytoplankton groups
and interact with the heat budget. Carbon cycling involves dissolved organic carbon (DOC) and dissolved
inorganic carbon [Gregg et al., 2013]. DOC has sources from phytoplankton, herbivores, and carbon detritus,
and a sink to dissolved inorganic carbon (DIC). DIC has sources from phytoplankton, herbivores, carbon
detritus, and DOC, and communicates with the atmosphere, which can be either a source or sink. The
ecosystem sink for DIC is phytoplankton, through photosynthesis. This represents the biological pump
portion of the carbon dynamics. The solubility pump portion is represented by the interactions among
temperature, alkalinity (parameterized as a function of salinity), silica, and phosphate (parameterized as a
function of nitrate). The alkalinity/salinity parameterization utilizes the spatial variability of salinity in the
model adjusted to mean alkalinity from the Ocean Model Intercomparison Project (OCMIP) [Orr et al., 2001].
The calculations for the solubility pump follow the standards set by the OCMIP.

NOBM’s domain spans from �84° to 72° latitude in increments of 1.25° longitude by 2/3° latitude, including
only open ocean areas where bottom depth is greater than 200m. The model contains 14 vertical layers, in
quasi-isopycnal coordinates and is driven by MERRAmonthly mean wind stress, sea surface temperature, and
shortwave radiation fields. MODIS-Aqua chlorophyll data were assimilated to represent the sum of all
phytoplankton components in the model.

As part of the CMS FPP, daily NOBM ocean pCO2 fields were used as input into GEOS-5 and ocean atmosphere
CO2 fluxes were computed within GEOS-5 using the GEOS-5 atmospheric CO2 mixing ratios and winds. This
online ocean calculation results in CO2 fluxes calculated at the GEOS-5 physics time step (30min) that are
physically consistent with the evolution of simulated weather systems.
2.2.2. ECCO2-Darwin
The ECCO2-Darwin Ocean Carbon Cycle Model is based on a global, eddying, ocean and sea ice configuration
of the Massachusetts Institute of Technology general circulation model [Marshall et al., 1997a, 1997b]. It
combines results from two separate projects: the Estimating the Circulation and Climate of the Ocean, Phase
II (ECCO2) Project, which provides a data-constrained estimate of the time-evolving physical ocean state, and
the Darwin Project, which provides time-evolving ocean ecosystem variables. Together, ECCO2 and Darwin
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provide a time-evolving physical and biological environment for carbon biogeochemistry, which is used to
compute surface fluxes of carbon at high spatial and temporal resolution.

The ECCO2model configuration is a cube-sphere grid [Adcroft et al., 2004] with 18 km horizontal grid spacing
and 50 vertical levels [Menemenlis et al., 2005a, 2008]. The domain includes all global ocean basins. The
ECCO2 model configuration includes a dynamic/thermodynamic sea ice model [Losch et al., 2010; Heimbach
et al., 2010]. In a first step, the ECCO2 model configuration was adjusted using a low-dimensional (Green’s
functions) estimation approach [Menemenlis et al., 2005b]. In a second step, the method of Lagrange
multipliers (adjoint method) was used to adjust initial and time-evolving surface boundary conditions
[Wunsch and Heimbach, 2007]. Data constraints include sea level anomaly from Jason-1 and the Ocean
Surface Topography Mission (OSTM) aboard Jason-2, sea surface temperature from the Advanced Microwave
Scanning Radiometer-EOS (AMSR-E), and temperature and salinity profiles from Argo. This adjoint-based
ECCO2 solution is used to drive the Darwin ecosystem model.

The Darwin Project is an initiative to advance the development and application of novel models of marine
microbial communities, identifying the relationships of individuals and communities to their environment,
connecting cellular-scale processes to global microbial community structure [Follows et al., 2007; Follows and
Dutkiewicz, 2011; Dutkiewicz et al., 2009]. The particular configuration used for the CMS FPP includes five
phytoplankton functional types (choices based on results from previous versions of the model) and two
zooplankton types. The carbon cycle is explicitly included in this configuration, along with those of nitrogen,
phosphorus, iron, silica, oxygen, and alkalinity. The carbonate chemistry follows the simplified model
proposed by Follows et al. [2006], and air-sea CO2 exchange is parameterized according toWanninkhof [1992].

ECCO2-Darwin fluxes produced as part of the CMS FPP are described in more detail in H. Brix et al. (Using
Green’s Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model,
submitted to Ocean Modeling, 2014). GEOS-5 simulations presented here use version 2.1 fluxes. Since the
CMS FPP, ECCO2-Darwin fluxes have undergone further development including modification of the piston
velocity parameterization.
2.2.3. Differences Between Ocean Flux Estimates
On a global basis, NOBM ocean fluxes contain very little seasonal variation while the ECCO2-Darwin fluxes
include a seasonal cycle with amplitude of 0.3 Pg C (Figure 1). The small seasonal cycle in NOBM derives from
use of seasonally invariant atmospheric pCO2 data and is only modestly rectified by the online flux calculation
used in conjunction with GEOS-5. Both models estimate comparable global fluxes for much of the year
but during June, July, August, and September, ECCO2-Darwin fluxes indicate a weaker ocean sink (or slight
source) relative to NOBM. NOBM uptake of carbon occurs as a function of enhanced biological activity near
the subpolar front, which is driven by the assimilation of satellite chlorophyll observations. As a result, the
2009 (2010) annual ECCO2-Darwin ocean sink is 2.4 (2.6) Pg C compared to 3.7 (4.0) Pg C from NOBM, a
difference of 36% (35%). The Global Carbon Budget (GCB) [Le Quéré et al., 2013] estimates a global ocean flux
of 2.57 (2.55) Pg C yr�1 for 2009 (2010). NOBM ocean fluxes indicate a stronger ocean sink than the GCB
estimate, while ECCO2-Darwin estimates differ by less than 10% from GCB in both years.

Figure 3 shows geographic distributions of ocean fluxes computed by NOBM and ECCO2-Darwin for
4months in 2009. During January, differences between model estimates of flux are largest in high-latitude
oceans. NOBM estimates a greater Atlantic Ocean sink north of 30°, while ECCO2-Darwin estimates a much
stronger ocean sink in the Southern Ocean than is evident in NOBM. The differences are the result of high
outgassing in ECCO2-Darwin in the North Atlantic east of Greenland and modest sources to the atmosphere
in the Arctic extreme latitudes that are not covered by NOBM. April distributions are generally similar to
January, though a decrease in the northern NOBM sink and increase in the ECCO2-Darwin sink relative to
January result in spatially inhomogeneous differences north of 30°. During July, ocean flux distributions
differ substantially from January; the northern sink in NOBM has weakened as the spring bloom has faded
and ocean temperatures have risen and is now evident only in the north Atlantic basin. ECCO2-Darwin’s
strong Southern Ocean sink has also weakened while the NOBM Southern Ocean sink has become
stronger. The spatial patterns are similar with the subpolar frontal zone in location, but NOBM’s drawdown
is enhanced as described above while ECCO2-Darwin exhibits high outgassing along 60° latitude west of the
Drake Passage. During October, the NOBM distribution of fluxes is dominated by a strong sink throughout
much of the Southern Hemisphere oceans. ECCO2-Darwin indicates stronger sinks in high-latitude regions
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of both hemispheres but with less areal extent relative to NOBM. Ocean models also differ in their
estimation of coastal fluxes, particularly off the Atlantic coasts of Africa and North America and the Pacific
coast of South America.

In regions below 30°S, ECCO2-Darwin estimates an ocean sink 27% (23%) greater than NOBM during 2009
(2010). In addition to differences in magnitude of the sink in this region which includes the Southern Ocean,
the seasonal cycle of ocean fluxes is nearly reversed; NOBM estimates peak drawdown in the sink during SH
winter months, while ECCO2-Darwin indicates that the sink is at its weakest during these months. In SH
summer, ECCO2-Darwin simulates a maximum in CO2 drawdown in the region while NOBM simulates a
minimum. The differences are likely related to the model configurations. ECCO2-Darwin employs a dynamic
ice model while NOBM utilizes sea ice data. Also, ECCO2-Darwin assimilates local physical conditions in
contrast to NOBM, which assimilates satellite chlorophyll. NOBM, whose domain only extends to 72°N,
estimates a sink several times weaker than ECCO2 in NH high-latitude oceans. The largest disparities between
ocean flux models occur in regions that are rarely observed by ships or are observed only during certain
months as shown in Takahashi et al. [2009].

2.3. GEOS-5 Earth System Model

The GEOS-5 AGCM has been developed as a flexible tool to represent the atmosphere on a variety of
temporal and spatial scales. It is a central component of the GEOS-5 atmospheric data assimilation system
[Reinecker et al., 2008], where it is used with 0.5° spatial resolution for meteorological analysis and forecasting
[Zhu and Gelaro, 2008] including the production of MERRA which spans the period from 1979 to present
[Reinecker et al., 2011]. It has also been developed as a tool for studying atmospheric composition and

Figure 3. Monthly ocean flux estimates from the (left) NOBM and (middle) ECCO2-Darwin models and their difference (right, NOBM minus ECCO2-Darwin) for
January, April, July, and October of 2009. Units are 10�3 kg carbon per m2 per month (note that the ocean fluxes shown here are an order of magnitude smaller
than the land fluxes shown in Figure 2).
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climate. Ott et al. [2010] used GEOS-5 to examine the impact of Indonesian biomass burning aerosols on
atmospheric circulation, and Ott et al. [2011] examined the impact of uncertainty in GEOS-5 convection on
global carbonmonoxide distributions. Model output has also been used byWang et al. [2009] to compute CO:
CO2 correlations and their impact on inverse modeling.

The AGCM combines the finite volume dynamical core described in Lin [2004] with the GEOS-5 column
physics package, summarized in Reinecker et al. [2008]. The model domain extends from the surface to
0.01 hPa and uses 72 hybrid layers that transition from terrain following near the surface to pure pressure
levels above 180 hPa. In this study, the horizontal resolution is 1° × 1.25° (latitude by longitude) and the time
step is 30min for physical computations, with more frequent computations of resolved-scale transport in the
dynamical core. Trace gases are transported online in GEOS-5 using the Lin [2004] dynamical core for
resolved scales, turbulent mixing of CO2 is performed in the same way as for moisture (using the Lock et al.
[2000] boundary layer turbulence module), and using the Relaxed-Arakawa Schubert convective scheme
[Moorthi and Suarez, 1992] to represent convective transport. In the present simulations, transport is
constrained with MERRA fields to ensure consistency with observed meteorology.

Land biosphere, biomass burning, fossil fuel, and ocean CO2 fluxes are prescribed in GEOS-5. For the CMS FPP
simulations, GEOS-5 was configured to simulate the emission and transport of several different CO2 tracers
representing differing combinations of land and ocean fluxes described in Table 1. In addition to the land
biosphere and ocean fluxes provided as part of the CMS FPP, CO2 emissions from fossil fuels are taken from the
Department of Energy’s Carbon Dioxide Information Analysis Center [Boden et al., 2011]. Prior to the target
2009–2010 CMS period, CO2 tracers were spun up from 2000 to 2008 beginning with a uniform initial condition
of 350ppm to ensure realistic atmospheric distributions. During the spin-up period, land biosphere and
biomass burning fluxes from an earlier version of the CASA-GFED model were used in combination with ocean
and fossil fuel fluxes from the TransCom Continuous Experiment [Law et al., 2008]. Simulated CO2 mixing ratios
for December 2008 were calculated at the locations of NOAA Earth Science Research Laboratory (ESRL) marine
boundary layer stations [Novelli et al., 1992] and compared with observations; on the basis of this comparison
a uniform global offset was subtracted from the simulated CO2 fields to ensure that global average surface CO2

concentration was representative of atmospheric conditions at the beginning of the CMS period.

3. Comparison With CO2
Observational Records
3.1. Comparison With Surface CO2

In Situ Observations

NOAA’s Earth System Research
Laboratory (ESRL) Carbon Cycle
Greenhouse Gases (CCGG) group
analyzes samples taken weekly at an
international cooperative network of
surface observing stations [Tans et al.,
1990]. These data have been used to
understand both long-term changes
and interannual variability of natural
carbon sinks [e.g., Ballantyne et al., 2012;
Conway et al., 1994]. Sites are typically
located in remote locations (Figure 4) so

Table 1. Combinations of Surface (Land Biosphere and Oceanic) Fluxes Used in the Model Computations in the Flux Pilot Projecta

Flux Combination Land Biosphere Ocean Total Land and Ocean Flux (Pg C yr�1) Annual Mean Growth Rate at MBL Sites (ppm yr�1)

CG-NO CASA/GFED-3 NOBM �3.4 (2009), �2.8 (2010) 2.7
AC-NO Ames CASA NOBM �1.2 (2009), �1.9 (2010) 3.5
CG-ED CASA/GFED-3 ECCO2-Darwin �2.1 (2009), �1.4 (2010) 3.3
AC-ED Ames CASA ECCO2-Darwin 0.1 (2009), �0.5 (2010) 4.1

aFossil fuel fluxes were identical in all four combinations.

Figure 4. Locations of NOAA (red) and TCCON (blue) observing stations in
operation during the study period. Open red circles indicate stations that
collected an insufficient amount of data in 2009–2010 and thus were not
included in Figures 6–8. Red (blue) “cross” marks indicate NOAA (TCCON)
stations shown in Figure 5 (Figure 12).
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that observations represent the background surface CO2 mixing ratios rather than local source and sink
influences. More information on specific site locations is provided on the NOAA ESRL web page (http://www.
esrl.noaa.gov/gmd/ccgg/ggrn.php).

For comparison to surface stations, the GEOS-5 grid cell containing each station location was sampled at the
time that an observation was collected and simulated CO2 mixing ratios then vertically interpolated to the
altitude of the observing station creating model “pseudodata.” Observations and pseudodata are averaged
over the course of a day (when multiple observations are present), and daily simulated and observed CO2

mixing ratios at Mauna Loa, Ny-Alesund, and Palmer Station (indicated in Figure 4) are shown in Figure 5 for
the flux scenarios described in Table 1. One of the primary features evident in this comparison is difference
in annual atmospheric growth rate between the flux scenarios. In the beginning of 2009, all scenarios in the
GEOS-5 simulations begin from the same CO2 mixing ratios, but over time differences in the magnitude of the
combined land and ocean carbon flux cause the spread in the ensemble of simulations to grow. While this
spread in simulations caused by differing growth rates happens at all stations, it is most evident at Mauna Loa
and Palmer Station because of the smaller amplitude of the seasonal cycle at these locations. We calculate
growth rates for each flux scenario by first calculating themonthly mean of surface CO2mixing ratio at all CCGG
marine boundary layer (MBL) sites during 2009 and 2010. For each month, the 2009 MBL monthly mean is
subtracted from the corresponding 2010 value and these differences are averaged over all calendar months to
estimate the annual mean growth rate shown in Table 1. Using the samemethod to calculate the annual mean
growth rate from observations yields a value of 2.4 ppm. Flux scenario CG-NO, which combines NOBM and

Figure 5. (left columns) Simulated and observed CO2 at the Ny-Alesund (ZEP; top), Mauna Loa (MLO; middle), and Palmer Station (PSA; bottom). (right columns)
Simulated and observed CO2 at the same locations when differences in atmospheric growth rate are removed. Red indicates NOAA ESRL observations while
black, green, and blue indicates GEOS-5 simulated mixing ratios assuming flux scenarios CG-NO, AC-NO, and CG-ED, respectively (flux scenarios are described in
detail in Table 1).

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022411

OTT ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10

http://www.esrl.noaa.gov/gmd/ccgg/ggrn.php
http://www.esrl.noaa.gov/gmd/ccgg/ggrn.php


CASA-GFED fluxes, provides the most favorable comparison with the observed growth rate. Both the Ames
CASA and ECCO-2 fluxes produce weaker natural sinks than flux scenario CG-NO resulting in greater rates of
accumulation of CO2 in the atmosphere for scenarios AC-NO and CG-ED relative to scenario CG-NO.

In order to separate the spatial and temporal differences in flux from the difference in atmospheric growth
rate of CO2, we temporarily remove the difference in growth rate by subtracting the trends from observations
and simulations (Figure 5, right columns only). At Mauna Loa, the detrended time series shows that land
biosphere flux differences have a greater impact on simulated mixing ratios than do ocean flux differences.
None of the flux scenarios succeeds in reproducing the magnitude of the seasonal cycle observed at Mauna
Loa, likely because the NH land sinks in both estimates are too weak or because of deficiencies in model
transport. At Ny-Alesund, all model simulations reproduce the seasonal cycle reasonably well though
simulations tend to overestimate CO2, particularly during spring. Differences in seasonal cycle between the
Ames CASA and CASA-GFED fluxes are small but evident at this station in spring and summer months. Ocean
flux differences manifest as much smaller mixing ratio differences despite the fact that only one model,
ECCO2-Darwin, produces fluxes at this high-northern latitude region. At Palmer Station Antarctica, ocean flux
differences are larger than at any other station due to the disparity between model estimates of Southern
Ocean flux. NOBM overestimates the magnitude of the observed, weak seasonal cycle by 0.5 ppm, while
seasonal variations in the ECCO2-Darwin simulation are much too strong resulting in a 5 ppm overestimate of
the seasonal cycle amplitude. The similarity of the CG-NO and AC-NO simulations and large differences
between the CG-NO and CG-ED simulations suggests that the seasonal cycle of nearby ocean fluxes more
strongly influences the simulation of CO2 at high-latitude SH stations than does the seasonal cycle of
land fluxes.

Figure 6 compares observed and simulated (assuming flux combination CG-NO without detrending) monthly
mean CO2 mixing ratios at all NOAA ESRL stations collecting substantial amounts of data during the 2009-2010
period. Observations at NH stations comprise the bulk of the data set and show a strong seasonal cycle due to the
influence of the land biosphere. The CG-NO simulation also shows a strong seasonal cycle for most stations north
of 30°N. At these locations, the model tends to overestimate CO2, particularly during NH spring and summer,
because the CASA-GFED3 land sink is too weak. Comparisons with the GCB, presented by Le Quéré et al. [2013],
indicate an overestimate of global fluxes by the GC-NO flux combination of approximately 3 Pg Cwhich translates
into an average, global overestimate in the atmospheric CO2 of 1.4ppm assuming that the excess CO2 were

Figure 6. Monthly mean CO2 (ppm) observed at NOAA ESRL stations during (left) 2009–2010 compared with simulated
CO2 assuming flux combination CG-NO ((middle) no detrending applied). (right) The model-observation difference.
Stations are oriented from north (top) to south (bottom) on all plots.
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instantly diffused throughout the mass of the atmosphere. At stations north of 60°N, annual mean CO2 is,
on average, overestimated by 2.3 ppm during 2010, while stations between the equator and 60°N are
overestimated by an average of 1.3 ppm. CO2 at northern high-latitude stations is overestimated by an
average of 4 ppm during spring months and 3 ppm during summer, while NH stations south of 60°N are
overestimated by 1.7 ppm during spring and 1.9 ppm during summer. The difference in the magnitude of
overestimate between NH high and midlatitude stations may indicate that the CASA-GFED3 land sink
underestimate is concentrated in this area or that vertical transport errors are greater at NH high latitudes,
resulting in excessive concentration of CO2 near the surface. In the SH, model errors average 1.7 ppm
during 2010 and show much weaker seasonality.

In Figure 7, we evaluate the ability of GEOS-5 simulations to reproduce the seasonal cycle in CO2 observed at
ESRL stations during 2010. To calculate seasonal cycle errors, monthly means were calculated from
observations andmodel output after detrending to remove the annual growth rate. We define the amplitude
of the seasonal cycle as the difference between the maximum and minimum monthly values. Errors in the
months during which minima and maxima in the seasonal cycle occur are also calculated for each station.
Means of the amplitude and phasing errors are then calculated over 10° latitude bands and only include
stations for which data are available in every calendar month during 2010. At NH midlatitude and high-latitude
stations, performance is similar for all model flux combinations. Simulations overestimate the magnitude of the
seasonal cycle by a few parts per million on average, generally succeed in estimating the summer month
during which the minimum should occur, but have more difficulty in estimating the timing of maximum CO2

ratios in the winter. While errors in the amplitude of the seasonal cycle are small at tropical stations, the model
given any flux combination tends to struggle reproducing the observed timing of minima and maxima at
SH tropical stations. This is likely due to a combination of the weak seasonal cycle in CO2 at these locations,
errors in the transport of CO2 from NH locations, and uncertainty in land fluxes in this region that contains
dense vegetation. All simulations considered in this study fail to adequately simulate the seasonal cycle at SH
high-latitude stations. Amplitude errors of several parts per million are often larger than the observed seasonal
cycle magnitude. In these locations, ECCO2-Darwin fluxes, which indicate a stronger Southern Ocean sink
with greater seasonality relative to NOBM, degrade model performance in terms of both seasonal cycle
amplitude and the timing of the maximum in surface CO2 mixing ratio.

Figure 7. Evaluation of the simulations’ ability to represent the seasonal cycle of CO2 observed at NOAA surface stations
during 2010. (top) The mean error in the magnitude of the seasonal cycle calculated over 10° latitude bins and for flux
combinations CG-NO, AC-NO, and CG-ED. The mean error in the month during which the (middle) minimum (bottom,
maximum) in the seasonal cycle occurs. Boxes identify mean values while vertical lines indicate maximum and minimum
values within each 10° latitude range.
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Despite the substantial flux differences among the land and ocean models shown in Figures 1–3, differences
in atmospheric CO2 mixing ratio at remote surface stations tend to be quite subtle as evident in the time
series comparisons in Figure 5. To quantitatively determine how atmospheric CO2 observations might be
used to discern between these observationally informed flux estimates, we follow the method of Huntzinger
et al. [2011] who examined the utility of continuous atmospheric flux measurements at a set of tower
locations for constraining biospheric flux variability. In order to test the statistical significance of the
difference between simulated pseudoobservations, we apply a chi-square test of variance based on the
number of observations per month, the mean squared difference between pairs of pseudoobservations
using different flux estimates, and an estimate of expected model-data mismatch [Huntzinger et al., 2011].
Expected model-data mismatch, an estimate of how closely a model could reproduce an observation, is
estimated in this study by estimating the variance of observation residuals around a smooth curve fit to the
observations at each site, a method used by Bousquet et al. [1999] and Gurney et al. [2002]. We calculate mean
squared difference between simulated CO2 pairs by first removing the difference in annual growth rate as
shown in Figure 5. Qualitatively, this method allows us to assess how well the small atmospheric signal
caused by a difference in assumed flux might be distinguished from a background of strong variability. It is
important to note that expected model-data mismatch is calculated solely based on variability in the
observations in this study, though several other studies have explored alternate methods of estimating this
quantity [e.g., Michalak et al., 2004; Schuh et al., 2010; Gourdji et al., 2010].

Figure 8 shows the difference in monthly mean CO2 mixing ratio at NOAA ESRL stations resulting from
underlying land and ocean flux differences (no detrending applied). Differences which are not significantly
larger than the observation variance at a significance level of 0.05 are indicated by diagonal lines. The largest
differences due to land flux are evident at stations in the NH midlatitudes and high latitudes during spring
and early summer (2–4 ppm), when Ames CASA indicates an earlier drawdown of CO2 by the land biosphere
than does CASA-GFED3, and in January through March of 2010 (2–5 ppm), when the larger land to

Figure 8. Differences in monthly mean CO2 mixing ratio (no detrending) at NOAA surface stations due to differing (left)
land flux estimates and (right) ocean flux estimates. Diagonal bars indicate instances in which flux differences would not
be statistically significant from observation variability.
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atmosphere carbon flux in Ames CASA from the latter part of 2009 is most evident. A similar feature is not
present in 2009 because it is too close to the initiation of the simulations, but begins to be seen again in
December 2010. Land flux differences are typically less than 2 ppm at most remote SH locations. At NH
locations, land flux differences manifest primarily as a difference in seasonal cycle, consistent with the global
flux differences shown in Figure 1. Localized differences, such as those shown in Figure 2 during April and
October, are generally not evident in monthly mean CO2mixing ratios at NOAA ESRL stations because of their
remote locations. The lack of evidence of fire emissions, present in CASA-GFED3 and not Ames CASA, is
striking, particularly at SH locations. Analysis of the model’s GFED3 biomass burning tracer shows that at all
stations except Ascension Island, deviations from the annual mean are smaller than 1 ppm. At Ascension
Island, biomass burning events with greater than 1 ppm influence only occur on a few days.

Even in locations and months where substantial differences in CO2 mixing ratio due to land flux exist, their
magnitude is small enough that they are often difficult to distinguish from variability evident in the
observations. In the NH midlatitudes, differences in CO2 mixing ratio attributable to land flux would not be
significantly larger than the observation variance because of the large degree of variability evident in the
observational records. Differences at NH high-latitude stations and in the SH are statistically significant but
only during certain seasons.

Differences between ocean flux models, which are nearly as large as land flux differences on a global
annual basis but exhibit much less seasonality, are even less evident at NOAA ESRL stations. Large
differences due to the difference in Southern Ocean sink exist only at stations south of 30°S but are
statistically significant in most months. Significant differences between the two ocean models at all
stations south of 30°S demonstrate the importance of ocean flux in that region. There, NOBM fluxes are
more realistic than ECCO2-Darwin fluxes which result in underestimates in surface CO2 mixing ratio and
errors in the gradient between tropical and SH high-latitude CO2. Observations suggest a mean
difference between Mauna Loa and SH high-latitude stations during March, April, and May (MAM) of
6.6 ppm. While NOBM fluxes reproduce this spatial gradient fairly well, simulating a mean difference of
6.1 ppm, ECCO2-Darwin fluxes result in a gradient of 8.5 ppm indicating that Southern Ocean drawdown
is too large during certain months. Large differences in ocean CO2 flux are also present in the NH
(Figure 3), but the fact that they occur over smaller regions than in the SH results in smaller mixing ratio
differences at NH locations. The combination of smaller mixing ratio differences and greater variability
due to biosphere flux and fossil fuel emissions in the NH means that NH ocean flux differences are
difficult to distinguish from inherent measurement variability. Cold Bay and Shemya, both in Alaska and
strongly influenced by marine air, are two exceptions; at these locations differences due to ocean flux are
large enough to be distinguished.

3.2. Comparisons With HIPPO Aircraft Observations

Beginning in 2009, the High-Performance Instrumented Airborne Platform for Environmental Research
Pole-to-Pole Observations (HIPPO) project has measured atmospheric CO2, other trace gases, and aerosols
in a series of field campaigns. HIPPO missions consist of north-south transects spanning the Pacific
Ocean from 85°N to 67°S with profiles of atmospheric trace gases every 2.2° latitude [Wofsy et al., 2011].
HIPPO data have been used extensively for validation and calibration of remote sensing data
products [e.g., Wunch et al., 2010; Inoue et al., 2013], for evaluation of atmospheric transport models
[e.g., Keppel-Aleks et al., 2013; Mann et al., 2012], and to better understand emission and transport processes
[e.g., Keppel-Aleks et al., 2012; Kipling et al., 2013].

Three of the five planned HIPPO missions occurred during the 2009–2010 period. Because the first
deployment occurred in January 2009, shortly after the beginning of the CMS target period, our results
focus on the second and third HIPPO deployments (HIPPO-2 and HIPPO-3). Both campaigns sampled the
Pacific Ocean between 150°E and 90°W. During the second deployment, the majority of samples were
collected between 180°W and 150°W, while during the third campaign, sampling was focused between
170°W and 140°W. HIPPO data shown are 10 s average data. GEOS-5 pseudodata are created by sampling
the appropriate 3 h model output, interpolating model profiles to the measurement latitude and longitude,
and then interpolating resulting profiles vertically to replicate the measurement conditions as well
as possible.
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Figure 9 shows a longitudinal cross-section comparison between the observed CO2 data and GEOS-5
simulations (not detrended) for HIPPO-2, which occurred during October and November 2009. Relative to the
HIPPO data, GEOS-5 assuming flux combination CG-NO tends to overestimate CO2 throughout the sampled
region of the Pacific. Errors are greater in the NH (1–5ppm) than the SH (less than 3ppm). The model is able
to capture the major features of the observed transect, including elevated near surface CO2 mixing ratios at
NH high latitudes and enhanced CO2 mixing ratios aloft at 30°S and 30°N. Transects simulated using flux
combinations AC-NO and CG-ED are generally similar to the results produced by flux combination CG-NO, but
with some notable exceptions. The differences between observations and the CG-NO and AC-NO simulations
show that at NH locations, overestimates in CO2 are worse when using Ames CASA fluxes compared to
CASA-GFED. Near 30°S, the Ames CASA fluxes improve the model’s underestimate of near surface CO2

during SH spring. However, throughout most of the campaign Ames CASA fluxes result in greater errors
because the difference in the magnitude of the global land sink is less realistic. The use of ECCO2-Darwin
fluxes in flux combination CG-ED results in stronger ocean drawdown at NH high latitudes during autumn.
This helps to reduce the overestimate in CO2 mixing ratios at these locations, but elsewhere, model
performance is degraded because of the overall weaker ocean sink.

During HIPPO-3, conducted during March and April 2010 (Figure 10), model performance is generally
similar to performance during the second deployment. All flux combinations result in overestimates in NH
CO2, but this is worse when using Ames CASA fluxes than when using CASA-GFED fluxes. During March
and April, the much stronger Southern Ocean sink in ECCO2-Darwin is evident in observations near 60°S,
resulting in larger errors in this region compared to NOBM.

Figure 9. (top) Comparison of observed and simulated CO2 mixing ratios during HIPPO-2 in October and November 2009 shows HIPPO observations (top left), GEOS-5
using flux combination CG-NO (top right, no detrending) and the simulated minus observed difference (bottom left). (bottom) The difference between GEOS-5 and
observations using alternate flux scenarios AC-NO (bottom middle) and CG-ED (bottom right). Dashed boxes indicate regions where flux differences are significantly
larger than the variance of observations.
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We also evaluate the ability of HIPPO-2 and HIPPO-3 data to discern between flux combinations in different
regions of the atmosphere following Huntzinger et al. [2011]. Observation variance is estimated here as
the variance of CO2 observations within 10° latitude bins for layers from the surface to 2 km, from 2 to 4 km,
from 4 to 6 km, from 6 to 8 km, and from 8 to 9 km. The chi-squared test statistic is calculated for each of these
latitude-altitude regions using the number of observations, the mean squared difference between
simulations, and the observation variance. Dashed lines in Figures 9 and 10 indicate regions where the test of
variance indicates that flux difference induces differences in atmospheric CO2 mixing ratios that are
statistically significant at the 95% confidence level. During HIPPO-2, land flux differences are primarily
detectable in the SHmidlatitudes. SH CO2 differences are smaller than those in the NH, but data exhibit much
less variability (observation variances of 0.1 to 0.2 ppm in the SH compared to 0.2 to 1.4 ppm in the NH)
making the differences caused by land flux easier to distinguish from the background variability of
measurements. Flux differences in the SH midlatitudes also tend to be distinguishable through a deep layer
of the atmosphere, not only near the surface. Ocean fluxes are difficult to distinguish during the November
time frame of HIPPO-2 because the greatest disparity between ocean fluxes is in NH high latitudes where
background CO2 variability is strong. Land fluxes during HIPPO-3, in contrast to HIPPO-2, are detectable only
below 4 km and at midlatitude to high latitude of both hemispheres. Ocean flux differences are strongly
evident in the SH high and midlatitude locations where observation variances are less than 0.1 ppm.

The HIPPO data sets are also valuable for evaluating the model’s ability to simulate vertical gradients in
atmospheric CO2. Vertical gradients are calculated by first sampling model output at the measurement
locations to create pseudodate. Mean values of observations and pseudodata are then calculated over

Figure 10. (top) Comparison of observed and simulated CO2 mixing ratios during HIPPO-3 in March and April 2010 shows HIPPO observations (top left), GEOS-5
using flux combination CG-NO (top right, no detrending) and the simulated minus observed difference (bottom left). (bottom) The difference between GEOS-5
and observations using alternate flux scenarios AC-NO (bottom middle) and CG-ED (bottom right). Dashed boxes indicate regions where flux differences are
significantly larger than the variance of observations.
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5° latitude bins using all data below 2 km and between 6 and 8 km in each bin. The vertical gradients
for each latitude bin are calculated by subtracting the average 6–8 km CO2 mixing ratio from the
0–2 km average (Figure 11). During HIPPO-2, GEOS-5 tends to reasonably reproduce the observed
interhemispheric gradient both at low levels and aloft. During HIPPO-3, all flux combinations result in the
model overestimating the gradient between Northern and Southern Hemispheres CO2. However, the
vertical gradient is reasonably well simulated with the exception of ECCO2-Darwin which results in much
stronger negative vertical gradients at midlatitude and high-latitude SH locations than either simulated by
NOBM or observed. During HIPPO-3, the earlier spring drawdown in the NH Ames CASA fluxes also results in a
slight overestimate in the vertical gradient in CO2 at most locations. The fact that the interhemispheric
gradient in CO2 is overestimated during HIPPO-3, while local vertical gradients appear reasonable could
indicate either errors in the assumed source distributions and magnitudes or an error in large-scale
transport pathways.

3.3. Comparison With TCCON Column CO2 Observations

The Total Carbon Column Observing Network (TCCON), established in 2004, is a network of ground-based
Fourier transform spectrometers recording near-infrared direct solar spectra for a number of atmospheric
trace gases including CO2 [Wunch et al., 2011a]. Data are collected continuously during daylight hours when
viewing is not obscured by optically thick cloud and aerosol. Observations are estimated to have a precision
as high as 0.25% (~ 1 ppm) under clear-sky conditions. In contrast to the NOAA ESRL network, TCCON
provides total column CO2 observations comparable to the observations made by GOSAT. TCCON is also
much smaller than the NOAA flask network with 16 stations operating during the 2009–2010 study period
considered here (Figure 4). TCCON observations are the primary calibration and validation data set for GOSAT
[Wunch et al., 2011b] and their use for flux inference has been demonstrated by Chevallier et al. [2011]. For this
analysis, TCCON observations are slightly adjusted to account for laser sampling errors noted by
Messerschmidt et al. [2012] and Dohe et al. [2013].

Figure 11. (right) Simulated and observed vertical gradients in situ CO2 derived fromHIPPO data and GEOS-5model simulations. Gradients are calculated by binning
observations and pseudodata into 5 latitude bins and calculating the difference between the meanmixing ratios (left) below 2 km and (middle) between 6 and 8 km.
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In order to compare with TCCON observations, GEOS-5 CO2 fields (with no detrending applied) are sampled
at the appropriate observation time and convolved with the averaging kernel and a priori profile information
appropriate for each station as described in Wunch et al. [2010]. Simulated and observed daily means of
column CO2 are then calculated; the results for four stations are shown in Figure 12. As is expected, column
CO2 observations exhibit smaller seasonal variations than do surface observations. At both high NH
midlatitude stations shown (Garmisch and Lamont), GEOS-5 simulations are able to reasonably reproduce the
observed column CO2 mixing ratios with a slight underestimation in the amplitude of the seasonal cycle
(average underestimate over all NH midlatitude and high-latitude stations of 1.4 ppm for CG-NO fluxes).
Garmisch observations indicate a small decrease in column CO2 from January to March 2009 which is not
reproduced by any model configuration; a similar feature is not present at other NH TCCON stations or at
NOAA surface locations. Differences due to the flux combination assumed are small, typically no more than a
few parts per million, but the difference in seasonal cycle between CASA-GFED3 and Ames CASA is evident
particularly during NH spring. At the Izana, Tenerife station, GEOS-5 simulations overestimate summer CO2

mixing ratios relative to observations, a feature also found in the comparison against Mauna Loa surface
observations (Figure 5).

Monthly mean errors between GEOS-5 simulations (no detrending applied) and TCCON observations
(Figure 13) show that model errors are typically less than 3 ppm when flux combination CG-NO is assumed.
The model tends to overestimate CO2 at NH locations during spring and summer, while during winter
months, errors are small (less than 1 ppm at most stations). Model errors at NOAA ESRL NH stations (Figure 6)
during winter are greater than 5 ppm at some locations, resulting in small overestimates in seasonal cycle
amplitude at the surface (Figure 7). In contrast, the model slightly underestimates the seasonal cycle
amplitude at NH TCCON locations. This may be because of errors in simulated transport during winter months
resulting in too much CO2 near the surface, or because of differences in sampling locations between the ESRL
and TCCON networks.

Figure 14 shows differences in column CO2 mixing ratio at TCCON stations due to the difference in land and
ocean fluxes assumed (no detrending applied). The seasonality of differences due to differences between
Ames CASA and CASA-GFED3 is similar to the analysis of surface observations, but the magnitude of flux
differences manifests as a smaller magnitude atmospheric mixing ratio difference when the column is
considered. Despite the smaller total magnitude of the column differences, they are distinguishable from

Figure 12. Comparison of daily mean simulated (without detrending) and observed column CO2 at Garmisch, Lamont,
Izana, and Wollongong TCCON stations for 2009–2010.
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inherent measurement variability at most NH stations during late spring and early summer, and winter 2010.
This is largely due to the weaker variability in the column data and greater data volume yielded by
continuous measurements. The Ames CASA fluxes result in lower CO2 (0.5–1.5 ppm) at NH stations during
MAM 2009, and higher (2–3 ppm) CO2 at NH midlatitude and high-latitude locations during 2010 winter,
degrading performance relative to the CASA-GFED3 fluxes.

Detecting ocean flux differences at TCCON locations is considerably more difficult than detecting land flux
differences. Data from the Lauder station show some ability to differentiate between ocean fluxes during
somemonths of 2010, but data are not available at this site during 2009. These results point to the difficulty of
detecting ocean CO2 flux differences with column observations. The nearest surface station, Baring Head,
New Zealand, indicates a higher percentage of data useful for differentiating between ocean fluxes
throughout the year. Atmospheric mixing ratio differences caused by ocean flux uncertainty are typically
smaller than differences caused by land flux and, as a result, more difficult to separate from inherent
measurement variability. Additionally, the TCCON network includes no stations further south than Lauder,
making it impossible to directly observe Southern Ocean flux differences.

3.4. Comparisons With AIRS Satellite Observations

The Atmospheric Infrared Sounder (AIRS) instrument aboard the Aqua satellite provides a record of
midtropospheric CO2 from 2002 to present. Because data are collected during both day and night and
retrievals are performed in the presence of clouds, AIRS data provide unprecedented global coverage.
Accuracies are reported to be 2 ppm or better by Chahine et al. [2005] with a nadir footprint of 90 by 90 km2

[Chahine et al., 2008]. AIRS CO2 observations have been used to study temporal [e.g., Jiang et al., 2010; Li et al.,
2010] and spatial [e.g., Ruzmaikin et al., 2012; Bai et al., 2010] variability in midtropospheric CO2, to evaluate

Figure 13. (top) Monthly mean CO2 (ppm) observed at TCCON stations during 2009–2010 compared with simulated CO2
assuming flux combination CG-NO (middle, no detrending). (bottom) The model-observation difference. Stations are
oriented from north (top) to south (bottom) on all plots.
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atmospheric CO2 simulations [e.g., Feng et al., 2011], and for data assimilation studies [e.g., Liu et al., 2012;
Engelen et al., 2009].

GEOS-5 fields (without detrending) are sampled in the same locations as AIRS version 5 CO2 observations
using level 2 swath data. Simulated CO2 profiles for the appropriate 3 h period are interpolated to the location
of each observation that passes AIRS quality assurance procedures. AIRS CO2 weighting functions specific to
the observation latitude and background CO2 mixing ratio are applied as described in Chahine et al. [2008].
Monthly mean simulated and observed CO2 mixing ratios are then calculated over 5° latitude by 5°
longitude regions.

Figure 15 presents a comparison between AIRS observations and GEOS-5 simulated CO2 for October 2009, a
month that coincides with the beginning of the HIPPO-2 campaign. There is little agreement between the
AIRS observations and the CG-NO GEOS-5 simulation. AIRS indicates peak CO2 mixing ratios in SH
midlatitudes with minimum values in tropics and subtropics of both hemispheres. In contrast, GEOS-5
indicates enhanced midtropospheric CO2 over South America and SH Africa, likely because of the lofting of
fire emissions in these regions (Figure 2). GEOS-5 does not indicate the presence of enhanced CO2 mixing
ratios in the midlatitudes of either hemisphere resulting in a 2–5 ppm underestimate in these regions relative
to AIRS. In biomass burning regions, however, GEOS-5 overestimates midtropospheric CO2 by 1–3 ppm
relative to AIRS. These results are in sharp contrast to the comparison between HIPPO-2 CO2 observations and
GEOS-5 presented in Figure 9; that comparison indicates that GEOS-5 tends to overestimate midtropospheric
CO2 in the 30–60°S band over the Pacific Ocean from0 to 8km. The discrepancy between AIRS andGEOS-5 in this
region cannot be easily explained by errors in GEOS-5 vertical transport because Figure 11 indicates that GEOS-5
vertical CO2 gradients throughout the SH differ from observed vertical gradients by less than 1ppm. NH
underestimates of GEOS-5 relative to AIRS also coincide with regions where HIPPO-2 data indicate that GEOS-5 is
overestimating CO2 by 2–4ppm in the midtroposphere.

AIRS data show a significant amount of temporal variability evident in the observation variance calculated for
each 5° by 5° grid box (Figure 15). Observation variance is calculated for each grid cell by computing daily
means of available data during the 2009–2010 period, fitting a smooth curve through the daily data, and
calculating the standard deviation of the residuals, similar to the calculation of observation variance for
NOAA ESRL and TCCON data. Using this method, observation variance is typically between 1.5 and 4 ppm

Figure 14. Differences in monthly mean CO2 mixing ratio (no detrending) at TCCON stations due to (top) land flux
estimates and (bottom) ocean flux estimates. Diagonal bars indicate instances in which flux differences would not be
statistically significant from observation variability.
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with the largest observed variability in the midlatitude and high latitude of both hemispheres. Differences
between GEOS-5 simulations assuming different flux combinations are typically small in the
midtroposphere and upper troposphere regions represented by AIRS observations. The background
difference between flux combinations CG-NO and AC-NO, due to the difference in annual growth rate, is
1 ppm during October. In biomass burning regions in SH Africa and South America, Ames CASA fluxes result
in CO2 mixing ratios 1 ppm less than CASA-GFED fluxes, or nearly 2 ppm if the difference in annual growth
rate were removed. CASA-GFED results in 2 ppm more CO2 over equatorial Africa and SE Asia, but if the
difference in growth rate is removed, these differences are only 1 ppm. In tropical regions, where vertical
transport of surface fluxes is most rapidly communicated to the midtroposphere and upper troposphere,
spatial patterns of atmospheric mixing ratio differences resemble underlying surface flux differences
shown in Figure 2. However, the magnitude of these differences (1–2 ppm) is typically smaller than the
observation variance leading to a lack of ability to discern between flux scenarios with any statistical
significance. Ocean flux differences (shown in Figure 15f ), which are smaller in magnitude but more
consistent throughout the year, are not evident when model simulations are sampled with AIRS pressure
weighting functions except as a very slight modification to the north-south CO2 gradient that is not
statistically significant. AIRS is not able to observe the large ocean flux differences in high-latitude regions;
data are not available south of 60°S and in NH high latitudes, slow vertical transport times produce no
spatial signature of the underlying flux differences in the midtroposphere and upper troposphere where
AIRS measurements are most sensitive.

Figure 15. Comparison of AIRS observed midtroposphere CO2 mixing ratio with GEOS-5 simulations for October 2009 for 5° latitude by 5° longitude grid boxes.
(a) AIRS monthly mean mixing ratio and (b) monthly mean GEOS-5 mixing ratios (no detrending) assuming flux combination CG-NO sampled using AIRS pressure
weighting functions. (c) The variance of AIRS observations for each grid box and (d) GEOS-5 CO2 minus AIRS. The difference between (e) GEOS-5 simulated CO2
for flux combinations AC-NO and CG-NO and (f) combinations CG-ED and CG-NO; grid cells where these differences are not statistically significant at the 95%
confidence level are indicated by black lines.
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In all months during 2009–2010, AIRS data would have little utility for differentiating between spatial patterns
of flux differences. Figures 16a and 16b show the percentage of 5° grid boxes per latitude bin that contain
statistically significant land and ocean flux differences for each month during the study period. Land flux
differences would seldom be detectable and only in a small number of grid cells in the tropics and subtropics.
Ocean flux differences are not detectable in anymonth or location because themagnitude of themixing ratio
differences is always smaller than the variability inherent in the measurements.

Figure 17 shows a comparison between simulated and observed monthly zonal mean mixing ratios derived
from AIRS data and model pseudodata. GEOS-5 does not capture the seasonal cycle of zonal mean CO2

observed by AIRS. GEOS-5 midtropospheric CO2 exhibits a much stronger minimum during the NH growing
season (July–October) than does AIRS. AIRS indicates much stronger maxima in the NH high latitudes
during spring than indicated by GEOS-5, and a secondary maxima during September that is not simulated by
GEOS-5. GEOS-5 tends to produce larger than observed CO2 mixing ratios in the tropics and subtropics
throughout the year. In the SH midlatitudes, GEOS-5 underestimates AIRS zonal mean CO2 with the largest
differences in spring and autumn.

3.5. Comparisons With GOSAT Satellite Observations

The GOSAT, launched in 2009 by the Japanese Aerospace Exploration Agency (JAXA), monitors CO2 and
methane from space by analyzing high-resolution spectra of reflected sunlight within several near-infrared
bands [Kuze et al., 2009; Yokota et al., 2009]. The near-infrared measurement technique allows for greater
sensitivity to CO2 near the surface than the thermal infrared measurements of AIRS that are sensitive

Figure 16. Percentage of 5° latitude by 5° longitude grid cells per month and per latitude bin in which (a and c) land (b and d) ocean flux differences manifest as
significantly different satellite CO2 mixing ratios. Figures 16a and 16b show the detectability of flux differences by AIRS, while Figures 16c and 16d show results
for ACOS GOSAT data.
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primarily to the midtroposphere and upper troposphere. Retrievals are only performed under cloud-free
conditions resulting in a much smaller yield of usable soundings than AIRS. GOSAT observations have
been used to examine CO2 mixing ratios in megacities [Kort et al., 2012] and to estimate regional carbon
fluxes [e.g., Takagi et al., 2011; Basu et al., 2013; Maksyutov et al., 2013]. Several different retrievals of
column averaged CO2 dry air mole fraction (XCO2) based on GOSAT observations are currently being
produced. In this work, we use data produced by NASA’s Atmospheric CO2 Observations from Space
(ACOS) effort, a collaboration between the original JAXA GOSAT team and NASA’s Orbiting Carbon
Observatory (OCO) science team [Crisp et al., 2012]. These data are produced using a modified version of
the OCO retrieval algorithm applied to GOSAT observed spectra as described in O’Dell et al. [2012] and
have been validated extensively using TCCON measurements [e.g., Wunch et al., 2010, 2011a, 2011b].
Based on retrievals of realistic simulated observations, O’Dell et al. [2012] estimate that observations
contain root-mean-square XCO2 errors of ~1 ppm and a positive bias of 0.3 ppm. Dates used here are
ACOS version 3.4.

GEOS-5 fields (without detrending applied) are sampled at GOSAT measurement times and locations. Model
profiles are interpolated to the 20 atmospheric pressure levels used in the retrieval process and averaging
kernels provided as part of the ACOS data product are applied to convolve GEOS-5 mixing ratios with the a
priori CO2 mixing ratio profile. XCO2 is calculated from this simulated pseudo data profile. Monthly mean
simulated and observed CO2 mixing ratios are then calculated over 5° latitude by 5° longitude regions as was
done for the AIRS data comparison.

During October 2009, the spatial distribution of GEOS-5 assuming flux CG-NO compares much more
favorably with GOSAT observations (Figure 18) than with AIRS (Figure 15). The distribution of GOSAT XCO2

shows fairly uniform mixing ratios globally with slightly larger XCO2 over South America and Africa. The
GEOS-5 distribution is similar though XCO2 is overestimated by 1–3 ppm in most locations. This is consistent
with HIPPO-2 aircraft observations (Figure 9) which show similar overestimates between 0 and 8 km.
Observation variance was calculated as described above for AIRS data; observations were binned into 5° grid
cells, daily means calculated and then the standard deviation of residuals around a smooth curve considered
the observation variance. Using this technique, estimated observation variance is typically between 0.5 and
1ppm. However, despite the smaller observation variance values, differentiating between land and ocean
fluxes remains difficult because of the small number of observations collected. The difference in XCO2 due to
the underlying difference in land flux would be primarily detectable over Africa. Ocean flux differences are too
small to be detectable at any location.

A comparison between GOSAT data and GEOS-5 simulations during July 2009 (Figure 19) shows similar
features in both models and observations. The model is able to reasonably reproduce the observed spatial
distribution of XCO2 but tends to overestimate XCO2 by up to 5 ppm in most midlatitude and high-latitude
locations. This is consistent with model overestimates of 3–5 ppm at surface (Figure 6) and TCCON stations

Figure 17. Seasonal cycle of (a) zonal mean AIRS observed mixing ratios, (b) zonal mean GEOS-5 (CG-NO) mixing ratios (no detrending applied) calculated with AIRS
weighting functions, and (c) the difference between zonal mean model results and observations. All units are in parts per million.
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(Figure 13) during NH summer months. Model overestimates are larger during July than during October
because the land sink, at its peak during NH summer, is likely weaker in both CASA-GFED and Ames CASA
than in reality. The Ames CASA land fluxes, characterized by earlier drawdown of CO2 in the NH spring, result
in smaller CO2 mixing ratios during July in the NH than CASA-GFED despite the fact that the annual total
Ames CASA land sink is weaker. Though the largest differences in land flux during July are in the NH high
latitudes (Figure 3), the resultant atmospheric mixing ratio difference is not generally detectable at these
locations. Instead, land flux differences are most readily observed over NH ocean locations and over North
Africa because the observations exhibit much less variability in these locations. As in October, ocean flux
differences are not large enough to be detectable at any locations.

Figures 16c and 16d also show the percentage of 5° grid boxes per latitude bin that contain statistically
significant (p< 0.05) land and ocean flux differences for each month when GOSAT data are considered. In
contrast to AIRS and in spite of very sparse sampling, GOSAT observations would be able to distinguish spatial
pattern differences in atmospheric CO2 due to differing land fluxes in both hemispheres primarily during
their spring and summer months. Ocean flux differences are statistically significant in only a small number of
grid cells in the SH tropics.

Simulated zonal mean XCO2 from GEOS-5 agrees muchmore favorably with GOSAT data (Figure 20) than with
AIRS (Figure 17) as was the case when spatial distributions of CO2 during October 2009 were considered.
GEOS-5 tends to overestimate XCO2 throughout the year with the largest degree of overestimation during
NH spring and summer. The use of Ames CASA instead of CASA-GFED land fluxes helps to improve the

Figure 18. Same as Figure 14 but using ACOS retrievals of GOSAT observations and sampling instead of AIRS.
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overestimation during spring but degrades the comparison with observations during NH winter.
Atmospheric CO2 differences caused by differing land fluxes are detectable when zonal means are
considered primarily during spring and summer months in both hemispheres. Ocean flux differences are too
small to be detected by GOSAT observations in all months and in all locations.

4. Summary and Conclusions

As part of NASA’s CMS Flux Pilot Project, the GEOS-5 AGCM was used to simulate atmospheric CO2 mixing
ratios during 2009 and 2010 using two sets of model-based land and ocean flux estimates. All land and ocean
flux estimates were informed by multiple satellite data sets and compared with numerous observations with
the goal of better understanding the constraint on carbon flux provided by current observing systems.
Despite incorporating information from multiple satellites, the two land models used in this work differed by
an average of 1.7 Pg C in their estimate of the global land carbon sink during 2009 and 2010. Both land
flux models estimate the land biosphere as a net source of carbon to the atmosphere rather than a ~ 3 Pg C
sink as indicated by the Global Carbon Budget [Le Quéré et al., 2013]. While the presence of a missing land
sink was indicated by TRANSCOMmodels over 10 years ago [e.g., Gurney et al., 2002] and much progress has
since been made in understanding the processes which may account for the disparity between forward and
inverse model flux estimates, the CMS FPP results show that estimating realistic net land carbon fluxes at
both global and regional scales remains a challenge for models, even those informed by remote sensing
observations. Ocean models differ by 1.4 Pg C per year in global carbon flux. In ocean waters south of 30°S,
model flux differences are 25% as large as the mean regional flux and the phasing of the seasonal cycle also

Figure 19. Same as Figure 17 but for July 2009.
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differs substantially. The magnitude of these differences underscores the continued uncertainty surrounding
the ability of natural carbon reservoirs to compensate for increasing fossil fuel emissions.

Despite considerable differences in global flux, the performance of GEOS-5 simulations is generally similar
because of the strong role played by meteorological transport. This finding is consistent with previous
analyses by Keppel-Aleks et al. [2012]. GEOS-5 simulations assuming all flux combinations tended to
overestimate surface CO2mixing ratios in the NH, particularly during spring and summer seasons when errors
are 3–5 ppm. The amplitude and phasing of the seasonal cycle at most NH locations are reasonably well
simulated though themodel tends to slightly overestimate the amplitude of the seasonal cycle at the surface.
All flux combinations examined in this study struggle to adequately reproduce the timing of the observed
seasonal cycle at SH stations and at midlatitude and high-latitude SH locations and strongly overestimate the
magnitude of seasonal variability by as much as 5 ppm in some locations. Because the seasonal cycle is
much smaller at SH midlatitude and high latitude compared to NH locations, errors of this magnitude are
greater than the observed seasonal cycle amplitude.

Comparisons with HIPPO observations provide the opportunity to evaluate the realism of simulated vertical
mixing processes. As expected from flux and surface CO2 comparisons, GEOS-5 tends to overestimate CO2

mixing ratios relative to aircraft observations, particularly in the NHmidlatitude and high latitude. Differences
between mean near surface CO2 and CO2 observed between 6 and 8 km show that the model succeeds in
simulating realistic vertical gradients in CO2 during October–November 2009 and March–April 2010. The
HIPPO data comparisons indicate that during these months and over the Pacific, model errors in surface and
column CO2 are not likely to be attributable to vertical transport errors.

Figure 20. Seasonal cycle of (a) zonal mean ACOS observed mixing ratios, (b) zonal mean GEOS-5 (CG-NO) mixing ratios (no detrending) calculated with ACOS
weighting functions, and (c) the difference between zonal mean model results and observations. The difference in zonal mean caused by (d) land and (e) ocean
flux differences. Dashed lines indicate months where flux differences are not statistically significant from inherent measurement variability. All units are in parts
per million.
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GEOS-5 simulations succeed in capturing the major features of column CO2 observations from TCCON and
GOSAT though the model tends to overestimate CO2 by 3–4 ppm during NH summer regardless of the
combination of fluxes used. GEOS-5 is also able to reproduce the spatial patterns of XCO2 observed by
GOSAT. Comparisons between GEOS-5 and surface, aircraft, TCCON, and GOSAT data reveal a consistent
picture of the capabilities of contemporarymodels to reproduce atmospheric CO2 observations. Models tend to
overestimate CO2 because the combined land and ocean flux assumed is too weak. Overestimates at the
surface are largest during the NH summer months, consistent with an underestimate in the strength of land
biosphere sink that is most active in this region and during this season. HIPPO observations show that vertical
gradients are reasonably well simulated, meaning that excess CO2 in the model atmosphere is distributed
through the deep layer (typically between the surface and 8 km) sampled by the aircraft. Total column CO2

measurements (TCCON and GOSAT) are overestimated by GEOS-5 in the same locations and seasons as
indicated by comparisons with in situ measurements, but by a slightly smaller amount.

It is more difficult to reconcile AIRS midtropospheric CO2 observations with other observational records and
GEOS-5. When compared with AIRS midtropospheric CO2 mixing ratios, the model is unable to represent
either observed spatial distributions or seasonal cycle information. This discrepancy is noteworthy because
the variability of midtropospheric partial columns would be expected to be smaller than the variability
inherent in the total columnmeasurements. It is difficult to explain the differences between GEOS-5 and AIRS
as simply resulting from model errors, because analysis using aircraft data indicates that vertical transport in
the model is reasonably well simulated, and because the model is able to reasonably simulate the total
column observations of GOSAT and TCCON. While AIRS vertical weighting functions peak in the
midtroposphere, they are strongly sensitive to the upper troposphere/lower stratosphere (UTLS). Depending
on the latitude of the observation, 60–71% of the observed signal comes from pressures lower than 500 hPa.
In order for GEOS-5 simulations to both agree with TCCON and GOSAT and disagree with AIRS CO2

observations, the model would have to have large errors in the UTLS including overestimates in the tropics
and alternating underestimates and overestimates in the NH high latitudes. While there is no evidence of this
type of model bias in the comparisons with HIPPO presented here, sampling above 8 km is fairly sparse.
Further evaluation of AIRS CO2 mixing ratios is needed to evaluate the quality of reported data and
uncertainty estimates as well as averaging kernels, particularly in NH high and SH midlatitudes, where
features exist that appear to be inconsistent with other data sets. This work is especially important if AIRS and
other CO2 observations are to be used together in joint assimilation and inversion frameworks.

Despite differences between land and ocean flux estimates greater than 1 Pg C, resulting differences in
atmospheric mixing ratio at remote surface sites are small, typically less than 5ppm at the surface and 3ppm in
the column, and difficult to distinguish from inherent observed variability. At NOAA ESRL surface stations, the
difference between the Ames CASA and CASA-GFED land fluxes manifests most clearly in the atmosphere
during NH spring and winter months. Outside of NH high-latitude locations, CO2 mixing ratio differences are
rarely statistically significant when the variability of observations is considered. TCCON observations succeed in
detecting seasonal differences between land flux estimates in NH winter and spring months. Though flux
differences result in smaller mixing ratio differences in the column, the continuous monitoring strategy of
TCCON produces larger quantities of data, which facilitates separation of flux differences from inherent
measurement variability. AIRS satellite observations are unable to discern between land flux models because
the variability of observations is larger than themagnitude of the resulting simulatedmixing ratio differences in
themidtroposphere and upper troposphere. GOSAT observations are better suited to observing flux differences
because of greater sensitivity near the surface, and they show an ability to distinguish between land flux
estimates during summer months. However, GOSAT’s ability to differentiate between land flux estimates
remains limited by sparse coverage.

Ocean flux differences, characterized by large disparities at high latitudes of both hemispheres, are primarily
distinguishable from measurement variability at SH midlatitude and high-latitude surface stations. HIPPO
aircraft observations also succeed in differentiating Southern Ocean flux differences from measurement
variability. While in situ observations show an ability to discern between ocean flux estimates, remote sensing
techniques fail for several reasons. The sparse TCCON network contains no stations below 45°S, the region
where flux uncertainty is greatest and where surface observations show the greatest ability to differentiate
between ocean flux estimates. As was the case with land flux, ocean flux estimates produce mixing ratio
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differences that are smaller than the variability inherent in AIRS data. GOSAT observations, which have
smaller single-observation errors than AIRS and greater sensitivity near surface, do not observe ocean regions
south of 40°S. The difference between the ocean flux models included in the CMS FPP highlights the larger
uncertainty in how high-latitude ocean carbon storage has changed in recent decades and how it may
continue to change in response to future climate change. The inability of current remote sensing
observations to detect the large differences in ocean flux presented here highlights the need for continued in
situ observations and the development of remote sensing techniques which have the potential to increase
data yield over high-latitude oceans.

Small mixing ratio differences resulting from flux differences make it difficult to assess the performance of the
individual flux estimates. While CASA-GFED compares more favorably than Ames CASA to the total land flux
estimate from the Global Carbon Budget [Le Quéré et al., 2013], it still diagnoses the land biosphere as a net
source of CO2 to the atmosphere rather than a sink. NOBM overestimates the magnitude of the ocean sink
relative to the Global Carbon Budget and ECCO2-Darwin, but because both land flux estimates underestimate
the magnitude of the global sink, the CG-NO simulation produces the most realistic atmospheric growth
rate when compared with NOAA surface observations. The main land flux difference that manifests in
atmospheric CO2 mixing ratios is the difference in seasonal cycle between CASA-GFED and Ames CASA. While
the earlier spring drawdown in Ames CASA results in slightly better comparisons with surface observations
during the spring, earlier release of CO2 from the land to the atmosphere in autumn degrades comparisons during
winter. Small-scale differences between CASA-GFED and Ames CASA, including the presence of fire emissions
(CASA-GFED) or redistribution of crop CO2 (Ames CASA), are difficult to evaluate because these differences are not
readily evident in the available observational CO2 records. While ECCO2-Darwin produces a global ocean sink
magnitude nearly equal to the GCB estimate, comparisons with surface and aircraft data show that it is less realistic
than NOBM over the Southern Ocean where it diagnoses a larger sink with stronger seasonal variations.

While all flux combinations perform reasonably well in reproducing observed seasonal cycles and spatial
gradients in CO2, the troubling implication of this agreement between simulations is that even differences
between flux models on the order of Pg C are difficult to disentangle using current atmospheric CO2

observations. Ocean flux differences are particularly difficult to discern because they are smaller and tend
to occur in high-latitude regions that are poorly observed by current remote sensing platforms. The use of
aircraft campaigns, such as HIPPO, provides a valuable complement to existing long-term carbon
monitoring strategies andmay becomemore important in the future as natural carbon reservoirs in remote
high-latitude locations respond to a changing climate.

Observations from OCO-2 are expected to greatly improve data yield over much of the globe, which would
allow for a greater ability to use space-based observations for flux discrimination. However, OCO-2 will also be
limited in its ability to observe high-latitude locations meaning that it will not be able to directly observe
many locations associated with large flux uncertainty throughout the year. The Active Sensing of CO2

emissions over Nights, Days, and Seasons (ASCENDS) mission, which focuses on active rather than passive
observations of CO2, would improve the ability of GOSAT and OCO-2 to observe high-latitude locations but
is not likely to launch until the 2020s. These observational challenges underscore the need for a variety of types
of CO2 observations to help fill the gaps left by satellite observations and to provide additional, complementary
information to maximize the impact of satellite observations in regions where they are available.

The small differences in atmospheric CO2 mixing ratio due to surface fluxes also underscore the importance
of quality meteorological analyses and models. The ability to reasonably simulate small gradients in
atmospheric CO2 mixing ratio and to successfully track the transport of air parcels from the surface to the
locations and altitudes at which measurements occur is key to the success of inversion studies which seek to
reduce uncertainty in natural carbon sinks using atmospheric CO2 observations. Efforts begun as part of
NASA’s CMS FPP have succeeded in creating a closer connection between meteorological and CO2 variations
by incorporating CO2 simulation capabilities into an advanced numerical weather prediction (NWP) model.
Similar advances at the European Centre for Medium-Range Weather Forecasts, including the
implementation of operational CO2 forecasts, have been documented by Agustí-Panareda et al. [2014]. Closer
coordination between the CO2 and NWP modeling communities will help to minimize and improve
quantification of transport model error, ultimately aiding the challenge of improved flux estimation using
atmospheric CO2 observations.
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